20 research outputs found

    Dynamical Freezing in a Spin Glass System with Logarithmic Correlations

    Full text link
    We consider a continuous time random walk on the two-dimensional discrete torus, whose motion is governed by the discrete Gaussian free field on the corresponding box acting as a potential. More precisely, at any vertex the walk waits an exponentially distributed time with mean given by the exponential of the field and then jumps to one of its neighbors, chosen uniformly at random. We prove that throughout the low-temperature regime and at in-equilibrium timescales, the process admits a scaling limit as a spatial K-process driven by a random trapping landscape, which is explicitly related to the limiting extremal process of the field. Alternatively, the limiting process is a supercritical Liouville Brownian motion with respect to the continuum Gaussian free field on the box. This demonstrates rigorously and for the first time, as far as we know, a dynamical freezing in a spin glass system with logarithmically correlated energy levels.Comment: Final version available at Electron. J. Proba

    Finite connections for supercritical Bernoulli bond percolation in 2D

    Get PDF
    Two vertices are said to be finitely connected if they belong to the same cluster and this cluster is finite. We derive sharp asymptotics for finite connection probabilities for supercritical Bernoulli bond percolation on Z^2

    Exploring an Infinite Space with Finite Memory Scouts

    Full text link
    Consider a small number of scouts exploring the infinite dd-dimensional grid with the aim of hitting a hidden target point. Each scout is controlled by a probabilistic finite automaton that determines its movement (to a neighboring grid point) based on its current state. The scouts, that operate under a fully synchronous schedule, communicate with each other (in a way that affects their respective states) when they share the same grid point and operate independently otherwise. Our main research question is: How many scouts are required to guarantee that the target admits a finite mean hitting time? Recently, it was shown that d+1d + 1 is an upper bound on the answer to this question for any dimension d≥1d \geq 1 and the main contribution of this paper comes in the form of proving that this bound is tight for d∈{1,2}d \in \{ 1, 2 \}.Comment: Added (forgotten) acknowledgement
    corecore